Folding a rectangle into a box with maximum volume

How to construct a box from a given rectangle with arbitrary predefined side lengths by folding up the same amount from each edge in order to maximize the volume in the resulting container.
or
How to fold up the sides of a piece of paper to get the most space possible.
a
\square

a

1. Start with a rectangle of any proportion, long side on the bottom and white side up.

2. Fold over the top right corner so that the right edge now lies over the bottom edge.

Lucas Garron

3. Pinch where the former right edge of the paper terminates.

4. Unfold.

5. Now we have a segment of length a-b, which we will multipy by b.

6. Crease the diagonal from the top left to the bottom right (Only make it sharp on the left).

7. Make a crease perpendicular to the last one, going through the left bottom corner.

10. Make another crease perpendicular to the one from step 7, going to the mark from last step.

13. Make a mark where it

8. Make a crease perpendicular to the last one, going through mark from step 3. Where this crease meets the left edge, it marks (a-b)*b.

11. Fold the bottom left corner to the last mark and pinch.

14. Unfold.

9. Fold down the top left corner to the bottom, transfer the mark from last step, and unfold (similar to steps 2-4).

12. Fold the top left corner to the bottom so that the crease touches the last mark. (This does not touch the 45° angle [from step 9] at the top, except in a square)

15. Transfer the mark to the left edge, similar to step 9 , but in reverse.

16. Again, carefully fold a line perpendicular to the crease from step 7. On the bottom, this marks off $\sqrt{\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}}$.

19. Unfold.

22. Make 2 orthogonal creases through the intersection of last crease and the 45° one.

17. Fold the top right corner down (déjà vu from step 2).

20. Fold the bottom left corner to the one of the marks from step 18 and pinch.

23. Make 2 short 45° creases at the top corners.

18. Fold the right over so that the mark from two steps ago lies on the former top right corner; pinch crisply through both layers, and unfold.

21. Crease from there through the other mark from step 18. Where it meets the 45° angle, it marks off the desired length.

24. Fold in twice more, where the 45° creases meet step 22 's.

Provided a rectangle with given side lengths a and b (often, explicit values are given), find the length (x) which, when folded up from all four edges, produces the maximum volume in the resulting box.
is zero. In effect, we are looking for a
We can go about this problem using basic calculus. First, we need to find expression representing the volume of the box.

As you can see in the diagram above, the base of the box for a given x will be smaller in both length and width by $2 x$, since x is taken away on both sides from each. The height will be the amount folded up, x. Therefore, the volume of the box is:

$$
(a-2 x)(b-2 x) x
$$

This already tells us some things. For example, folding up thirds from a square (into an open cube) gives only half as much volume as the maximum, produced by sixths (If you don't believe me, try it). Anyhow, multiplying the parentheses out, we get:

$$
4 x^{3}-2 a x^{2}-2 b x^{2}+a b x
$$

What we are interested in is where this curve peaks, and thus, flattens. This is where the derivative
solution to the following equation:

$$
\left(4 x^{3}-2 a x^{2}-2 b x^{2}+a b x\right) \frac{\partial}{\partial x}=0
$$

A fter taking the derivative of the polynomial on the left side, we end up with a quadratic equation:

$$
12 x^{2}-4 a x-4 b x+a b=0
$$

If we factor the middle terms...

$$
12 x^{2}-4(a+b) x+a b=0
$$

... we can easily apply the quadratic formula ...

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

... to obtain ...

$$
x=\frac{4(a+b) \pm \sqrt{16(a+b)^{2}-48 a b}}{24}
$$

\ldots and after factoring out 16 inside the radical, taking it out of the radical and reducing, squaring $(a+b)$, and collecting terms:

$$
x=\frac{a+b \pm \sqrt{a^{2}-a b+b^{2}}}{6}
$$

However, we can prove that the larger value always produces a result greater than half of b :

First we assume that $a>b$ (If it is so, we keep them the way they are; if else, we switch them), and we define a number n_{1} to be a-b, which must be positive. Since the expression inside of the radical is equal to $(a-b)^{2}+a b$, and (because a is the same as $b+(a-b)$) a is $\mathrm{b}+\mathrm{n}_{1}$, we can rew rite the zero as:

$$
x=\frac{b+n_{1}+b+\sqrt{n_{1}{ }^{2}+\left(b+n_{1}\right) b}}{6}
$$

The inside of the radical is b^{2}, and a little more, so the positive square root will be b, plus a positive number we'll call n_{2}. Now we have:
$x=\frac{b+b+b+n_{1}+n_{2}}{6}=\frac{3 b+n_{1}+n_{2}}{6}=\frac{b}{2}+\frac{n_{1}+n_{2}}{6}$
As n_{1} and n_{2} are both positive, x is larger than half of b, which would imply that the two x 's in the diagram would overlap. Therefore, the larger value is extraneous. The smaller value, however, is always within appropriate bounds, and it is the solution:

$$
x=\frac{a+b-\sqrt{a^{2}-a b+b^{2}}}{6}
$$

But is this the largest possible shape? We could fold the rectangle into a tube and flatten the bottom, and it can have more volume. However, if it were filled with a fluid, it would spill through the overlap. W ith this model, the fluid can't escape through any opening except for the top (Again, if you don't believe me, try it). But maybe it's possible to get more volume (perhaps by leaning the walls of this box out more, or by folding the paper up into a V and locking the ends, or...). So here's my challenge: Come up with a better container that can hold more.

Good Luck!
-Lucas Garron (July 8, 2005)

