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The following pages contain my solutions to the MathCamp 2008 Qualifying Quiz. I worked out 
the basic solutions ideas for most of these by hand, but used the program Mathematica 5.1 to 
help me understand and extend some problems. The following is all my work; I have not 
discussed my solutions with anyone, and any other sources are cited within the problem. 
 

-Lucas Garron, May 18, 2008
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MathCamp 2008 Qualifying Quiz: Problem 1 
Lucas Garron 
 

Consider a truthteller (T) adjacent to two other people: 
_T_ 
 
This T truthfully claims that exactly one of his neighbors is a liar (L). This L may be on 

either side: 
1. TTL 
2. LTT 
 
Now consider a liar adjacent to two other people: 
_L_ 
 
This L falsely claims that exactly one of his neighbors is a liar (L). Thus, both or neither of 

his two neighbors is a liar: 
3. TLT 
4. LLL 
 
These are the only configurations of 3 adjacent people containing a T or an L in the middle, 

i.e. all. Any group of 3 adjacent campers must correspond to one of these. Note that each of these 
begins differently. Thus, if we know the truthfulness of 2 consecutive campers, we can ascertain 
the truthfulness of the camper to immediately to the right of them, as only one of the four 
patterns above allows a valid configuration 

 
Now, consider the chain of n campers in a circle, written out in a line that loops to the 

beginning after n people. The first two campers, beginning from any arbitrary spot on any circle, 
may be either TT, LT, TL, or LL: 

…TT… 
…LT… 
…TL… 
…LL… 
 
In order to satisfy the conditions of the problem, the camper to the right of each of these four 

possibilities of 2 adjacent people must satisfy one of the four patterns (and can match only one): 
…TTL… (Pattern 1) 
…LTT… (Pattern 2) 
…TLT… (Pattern 3) 
…LLL… (Pattern 4) 
 
This can be iterated with the right-most two people of each possible circle: 
…TTLTTLTTLTTLTTL…  
…LTTLTTLTTLTTLTT…  
…TLTTLTTLTTLTTLT…  
…LLLLLLLLLLLLLLL…  
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Since the truthfulness of each next student is determined by the previous two, any repetition 
after more than 2 adjacent campers implies that the repetition must continue on. 

A truthteller in the circle forces the circle to be comprised of repetitions of TTL; the only 
other possibility is a circle comprised entirely of liars. 

A circle of liars may loop with any number of campers in the circle, and still satisfy the 
conditions of the problem. Since n is required to be greater than 2, and there are only 8 liars at 
Logic Camp, any circle of liars of size 82 ≤< n  may be formed. 

 
The only other possible loop may consist of cycles of TTL. Such a circle at some point "begins" 
TTL from a person. The pattern TTL repeats. However, TTL must be preceded by L (pattern 2). 
The final person (before the circle loops to the initial TTL) must thus be a liar. Liars occur at the 
3rd location of every repetition of 3 people, thus are the last people (before looping) whenever n 
is multiple of 3 people: 3, 6, 9, 12, 15, 18, 21, 24. (The total number of people n in the circle is 
restricted by the total number of people, 26, in Logic Camp.) There are enough liars and 
truthtellers in camp to make a circle of any of these sizes. 
 
Any value other than the ones listed above  must be comprised of a pattern of truthtellers not 
described above. Since all possible patterns are described above, there are no other possible 
values of n. 
 
Thus, the only possible number of people in a circle at Logic Camp, each declaring "exactly one 
of my two neighbors is a liar," are: 
n = 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24 
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MathCamp 2008 Qualifying Quiz: Problem 2 
Lucas Garron 

 
Let us categorize the umbrellas by the number of people grouped under them: u4 for the 

umbrellas with 4 or less campers bunched under them, u5 for the umbrellas with groups of 5 
students, and u6 for the umbrellas with 6 or more students. Denote the total number of umbrellas 
by m, the number of u4, u5, and u6 umbrellas, respectively, by r, p, and q. The u5 umbrellas will 
have an average of 5 students, and so we only need to denote the average number of students per 
u4 and u6 umbrella: respectively, x and z. 

Take the problem: "If two thirds of the groups are larger than 5 people, prove that at least a 
quarter of the hikers will get soaked." I will prove the contrapositive: If less than a quarter of the 
hikers get soaked, it cannot be true that two thirds of the groups are larger than 5 people. 

If less than a quarter of the hikers get soaked (and thus more than 3 quarters are not soaked), 
then thrice the number of soaked hikers s must be less than the number n of non-soaked hikers: 

ns <3  Inequality 1 
 
Since a quarter of an umbrella is necessary to keep a camper dry, an umbrella may keep at 

most 4 campers dry. Thus, the maximum number of campers not soaked is equal to the sum of all 
the people under u4 umbrellas (rx, since all the up-to-four can be kept dry), and 4 times the 
number of u5+u6 umbrellas (since at most four can be saved by each).  

)( qprxn ++≤ 4   
( ) nqprx −≤++−⇒ )(4  Inequality 2 

 
The minimum number of campers soaked is equal to the number of campers who are in 

groups in which at least one camper must get soaked (those with more than four people, u5 or u6), 
except/minus 4 people who stay dry per each of those groups. 
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Adding inequalities 1, 2, and 3 gives: 
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If at least two thirds of the groups are larger than 5 people (u6), then the number r+p  of u4 

and u5 groups must be less than a third of the number of groups, m: 
3/mpr <+  

 
Consider prxrprx ++−=+ )( 1 . For fixed (positive, by definition) r and p, increasing x 

increases the value. Thus, its maximum value is achieved when x is at its maximum. Since x is 
the average number of people under u4 umbrellas, its maximal value is 4: 

prprrprxrprx +≤++−≤++−=+ 4141 )()(  
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Since p is positive, 0<3p: 
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034 ≤−+⇒ /mprx  Inequality 4 
 

If, again, at least two thirds of the groups are larger than 5 people (u6), the number q of u6 
umbrellas must be at least equal to two-thirds of the total number of umbrellas m. 

The average number of people under u6 umbrellas, z, is at least 6. Thus, the minimum value 
of the product )( 163 −zq  is mmmm

3
4

3
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3
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3
2 216631663 ==−⋅=−⋅ )()()( : 

)(/ 16334 −≤ zqm  
016334 ≤−−⇒ )(/ zqm  Inequality 5 

 
Adding inequalities 4 and 5 to the sum of inequalities 1, 2, and 3 gives: 

( ) ( ) ( )
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This is a contradiction. Assuming that less than a quarter of the hikers get soaked requires us 

to reject the only other hypothetical step to avoid this contradiction, and leads us to conclude that 
it cannot be true that two thirds of the groups are larger than 5 people. 

The contrapositive of the stated problem is true, thus: 
If two thirds of the groups are larger than 5 people, then, indeed, at least a quarter of the 

hikers will get soaked. 
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MathCamp 2008 Qualifying Quiz: Problem 3 
Lucas Garron 

 
Write a number n in base 3. This will give a unique representation of n as sums of powers of 

3 (at most two multiples of each power). A number is included in the problem's sequence if it can 
be written as a sum of single multiples of each power, i.e. when its base-3 representation 
indicates that not any power of 3 must contribute to the sum twice – when all the digits are 1 or 0. 

If a number's base-3 representation contains a 2, it cannot be in the sequence, as its 
representation as a sum of powers of 3 must contain the corresponding power twice (and it 
cannot be written as a sum of other [necessarily lower] powers of three, as the sum of these is 
less than half that the pertinent power, and to form it with lower powers would require 
duplication of a lower power in the sum). 

Thus, all the numbers in the sequence are the all the numbers that, in base three, contain only 
0 and/or 1 as digits. 

The base-2 expansion of the nth positive integer gives the digits of the base-3 expansion of 
the nth number in the sequence. Each base-3 sequence number can be directly converted to a 
unique base-2 integer, and vice-versa (the numbers will also remain in the same order). Thus, the 
sequence may be described through this equivalence. 

 
The googolth term in the sequence may be represented in base-3 by (10100)base 2. It contains 

 110100
2 +)(log  digits: 

        33319333132193100110100110 2
100

2 ==+=+=+ ..*)(log*)(log  
 

Each of the numbers in the sequence expressible as a single power of 3 is comprised of a 
base-3 representation containing a single 1. Each digit in (10100)base 2 corresponds to exactly one 
such lower number, as for every digit there is a unique lower number in the sequence with a 
single 1 written at that digit. 

 
Thus, there are 333 powers of 3 in the first googol terms in the sequence. 
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MathCamp 2008 Qualifying Quiz: Problem 4 
Lucas Garron 

 
(a) Assume that the letter is still correct. If a digit of value 10n changed, then that digit will 

change by some integer value z, and the entire number will change by z·10n, In order for the 
letter to remain the same, the old and new (digit-changed) number must be congruent mod 23, 
and their difference must be congruent to 0, mod 23: )(mod23010 ≡⋅ nz . Since z is a non-zero 
number (otherwise, the digit must have changed by a multiple of 23, which could only be 0 – no 
change), it has a unique non-zero inverse z-1.                                                                                                                                                                                                          

)(mod

)(mod

23010

23010 11

≡⇒

⋅≡⋅⋅ −−

n

n zzz
 

Thus, a power of ten must be divisible by 23. However, any power of ten is only divisible by 
two primes (5 and 2) smaller than 3) and cannot be divisible by the prime 23, and this is a 
contradiction. The letter must be different. 

 
If two digits are transposed, then the first digit x at the digit of 10n will change to the value of 

the digit y at 10m, and vice-versa. Take z=y-x. The number n in the ID will change to 
)()(*)( mnmnmn znzznyxxyn 101010101010 −⋅+=⋅−⋅+=−+−⋅+ . 

If the check digit is the same after the transportation, the difference between the entered 
number and the actual ID must be a multiple of 23:  

( )

)(mod

)(mod)(

)(mod(

)(mod)(

2301010

2301010

2301010

2301010

1

≡−⇒

≡−⋅⋅⇒

≡−⋅⇒

≡−−⋅+

−

mn

mn

mn

mn

zz

z

nzn

 

Since m and n must and each equal a (different) integer from 0 to 7 (each corresponding 
to a digit), the only possible values for 231010 modmn −  can be listed in a table: 

m 10n-10m 
(mod 23) 0 1 2 3 4 5 6 7 

0 - 14 16 13 6 5 18 10 
1 9 - 2 22 15 14 4 19 
2 7 21 - 20 13 12 2 20 
3 10 1 3 - 16 15 5 20 
4 17 8 10 7 - 22 12 4 
5 18 9 11 8 1 - 13 5 
6 5 19 21 18 11 10 - 15 

n 

7 13 4 6 3 19 18 8 - 
The difference cannot be congruent to 0 (mod 23), and so it must have been impossible for 

the check letter to remain the same. 
 
If a digit is entered incorrectly, or two digits are swapped, the check digit will be incorrect. 
 
 
(b) Consider all moduli higher than 23. The ID 12345678 may suffer from a digit mistake/ 

transposition will not change the check value: 
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Modulus 27: 12345678 ≡ 9, 18345672 ≡ 9 
Modulus 26: 12345678 ≡ 20, 18345672 ≡ 20 
Modulus 25: 12345678 ≡ 3, 18345678 ≡ 3 
Modulus 24: 12345678 ≡ 10, 13245678 ≡ 10 
 
The only sufficiently robust moduli (under 27) are 17, 19, and 23. 
 
Consider 19: Exactly the same argument applies as in (a), if each occurrence of 23 is 

replaced by 19 (I was careful to compose it so). However, the table for 19 (which still supports 
the corresponding argument identically) is: 

m 10n-10m 
(mod 19) 0 1 2 3 4 5 6 7 

0 - 10 15 8 14 17 9 5 
1 9 - 5 17 4 7 18 14 
2 4 14 - 12 18 2 13 9 
3 11 2 7 - 6 9 1 16 
4 5 15 1 13 - 3 14 10 
5 2 12 17 10 16 - 11 7 
6 10 1 6 18 5 8 - 15 

n 

7 14 5 10 3 9 12 4 - 
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MathCamp 2008 Qualifying Quiz: Problem 5 
Lucas Garron 

(Note that I am loosely utilizing different representations and notations of the same object or 
expression  without explicitly specifying so. For example, I use the given "|BE|=|AD|" as " 
|AD|=|EB|" later in the proof.) 

 

A

B C

D

E
z

y

y
x

x

 
 
We are given that |AB|=|CE|. Take their lengths to be x. Also, take |BE|=|AD|=y. Define z=|ED|. 
 

BAD∆  is similar to AED∆ , since they have two corresponding angles of equal measure 
( BADmAEDm ∠=∠  is given, and reflexively ADEmADBmEDAm ∠=∠=∠  since E is between BD), 
and the measure of the third angle of each must equal the measure of the other. Therefore, 
|DE|/|AD|=|AD|/DB|: 

)()()()( 51550 2
1

42222
22

±−=⇒±−=⇒±−=⇒=⇒=−+⇒=+⇒= −−±−
+ yzyyzyyzzyzyzyzzy yyy

zy
y

y
z

Since 15 > , and y and z must be positive, only the higher (positive) solution applies: 

5yyz +−=  
 

BAD∆  is congruent to CEB∆ , by the side-angle-side theorem from elementary geometry: 
|BA|=|CE| was given. 

AED∠  is congruent to its opposite CEB∠ , so CEBmAEDmBADm ∠=∠=∠  
|AD|=|EB| was given. 
 
Therefore, |BC|=|BD|, and |BC|/|AD| = |BD|/|AD|. 
Since E lies between B and D, |BD|=|BE|+|ED|=y+z. 
Thus, 

5
555 ==+−=+−+=+==

y
y

y
yyy

y
yyy

y
zy

AD

BD

AD

BC )( . 
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MathCamp 2008 Qualifying Quiz: Problem 6 
Lucas Garron 

 
 (a) The cat cannot catch the mouse. 

Label all the vertices in the graphs by their parity taxicab distance 
(mod 2) from the cat's starting location. The lower left corner has a value of 

0, and vertex m rows to the right and n columns up has labeled parity 
value m+n (mod 2). Any two adjacent, connected labels 
differ by 1 in n xor m, and so have different values. Any step 

must take an animal to a vertex of the other parity value. 
The cat and mouse both begin on vertices labeled 0. The 

cat moves to a 1-parity vertex first, then the mouse does so, 
too. At the beginning of any of the cat's turns turn, the two 

animals are both on vertices of the same parity. The cat could 
catch the mouse at any turn by moving to another vertex of the 
same parity (with the mouse on it), which is impossible. The 

cat can only catch the mouse if the mouse moves onto the 
cat's square during its turn. Since every vertex is connected to 

two others, the mouse will always have the option of moving to a non-cat vertex (as moving onto the cat's 
vertex –sometimes another option- would constitute a stupid move), and can evade the cat indefinitely. 
 
(b) The cat can catch the mouse. 

The cat should move right, up-left, and down (in that order) during its first three turns. The cat is now 
on the opposite parity on every turn (compared to last problem), and can now catch the mouse by moving 
to the vertex that will take it most closer to the mouse. During the first four moves, the cat remained in the 
upper fourth of the grid, and prevented the mouse from switching its parity, too (for the mouse would 
have to encounter the cat in order to switch parity). 

After this, the cat should move parallel to the mouse's last move in the direction that will bring it 
closer to the mouse, and captures it when possible (or in an perpendiculr direction, if that would bring the 
cat even closer to the mouse). Thus, the cat either moves in the same direction as mouse's last move 
(preserving distance) or in the opposite direction of the mouse's move –bringing them together, implying 
that the mouse moved toward the cat on its move and decreased the distance between them. Thus, 
between the mouse's moves, the distance between the cat and mouse does not increase. Once the mouse 
has moved away from the cat in a direction, it will not be able to move in the opposite direction without 
moving closer to the cat. Thus, the mouse must eventually approach a perpendicular border of the grid, 
find itself unable to move in that direction, and must move in a perpendicular direction. This will also 
drive it to a border of the other orientation. Once it has been driven to two borders (in a corner), it will not 
be able to avoid moving closer to the cat, and then return to the corner (allowing the cat two moves to 
decrease the distance between it and the mouse). Eventually, the mouse will have to move to a square 
adjacent to the cat (consistent with the parity reversal imposed by the cat), so the cat may catch it. The 
mouse is unable to reverse its parity situation, because it will not be able to move farther from the mouse: 
the cat, moving toward it, will not allow it to enter the upper-right quarter; if the mouse could have come 
up to the quarter in x moves, the cat would have moved toward it/the the quarter for at least half those 
moves, and returned to its original vertex, with the opportunity to catch the mouse if it attempts to switch 
parity. 
 
(c) The cat cannot catch the mouse. 
The grid has 180° rotational symmetry. After the cat makes a move, the mouse may move to a distinct 
mirror point (as no points are their own mirror) not occupied by the cat, and thus avoid it every turn. The 
cat cannot catch the mouse on any turn, as it would have to catch the mouse on its mirror vertex in one 
move, and no vertex is adjacent to its mirror. 

C

M

1 0 1

0

0 0

0

1 1

11

1 1

0

0
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MathCamp 2008 Qualifying Quiz: Problem 7 
Lucas Garron 

 
(a) Each number contributes its value to four other squares, and thus each component of the total 
sum increases the total value by a factor of 4. The total of the numbers increases by a factor of 4 
every step. The sum is 40 before step 1, so the total at step n is 4n. 
The number in the position of the original 1 (which we shall denote (0,0) by considering the 
board an infinite grid of squares at integer-ordered-pairs locations in the Cartesian coordinate 
plane), at step n, is the middle of the of the nth row of Pascal's triangle: alternatingly, 0 and 
successive Catalan numbers. The value v of (0,0) at step n is: 

( )21
2

00
2

mod)(
/

),( +







= n

n

n
v  

This is a special evaluation of the case in (b). 
(If it seems troublesome that the binomial will not evaluate for odd n, simply take the floor of the 
lower argument –the result will be the same for even numbers, and still 0 for odd numbers.) 
 
 
(b) 
Each square is alternatingly 0 every other turn, according to the parity of the sum of is 
coordinates. At step n, the nth row of Pascal's triangle is located diagonally in the lower left of 
the first quadrant (perpendicular to the line crossing all points with equal coordinates). From this, 
a square extends diagonally downward to the left, forming the same rows of Pascal's triangle, 
multiplied by the value where they reach their last value in the upper-right end, intersecting with 
the aforementioned row in the first quadrant. 
 
Since only a description is requested, I will simply and concisely state the formula that describes 
this: 

( )21
22

mod)(),( )()( +++



















= −+++ nyx

nn
yxv yxnyxn  

 
 

(Again, the floors of the lower arguments may be taken to provide for proper evaluation.) 
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MathCamp 2008 Qualifying Quiz: Problem 8 
Lucas Garron 

 
The following is a table of possible sticker assignments to the foreheads of Amy (A), Brian (B), 
and CoScott (C). R represents a red sticker on a person's forehead, B a blue sticker. Note that an 
assignment of BR represents any blue sticker and red  sticker, since their relative location on the 
forehead is irrelevant. 
Note that the rightmost section of the table should be considered initially empty. Also note that 
the table is vertically symmetric with respect to R and B, as which color is denoted R (and the 
other denoted B) is actually arbitrary. 
Without loss of generality, we can find the probability of Amy wearing each of 3 possible 
combinations of sticker then Brian's and CoScott's.  The probabilities of each cumulative known 
sticker assignment are written adjacent to the sticker possibilities, pX…Y representing the 
probability of X through Y having the configuration listed in the covered rows. 
 

# A B C pA pAB pABC Winner 
1 BB BB RR 1/70 1/70   C1   
2 BB BR BR 4/70     B2 
3 BB BR RR 

8/70 
4/70     B2 

4 BB RR BB 1/70  B1    
5 BB RR BR 4/70   C1   
6 BB RR RR 

3/14 

6/70 
1/70 A1     

7 BR BB BR 4/70    A2  
8 BR BB RR 

8/70 
4/70    A2  

9 BR BR BB 4/70     B2 

10 BR BR BR 16/70     B2 
11 BR BR RR 

24/70 
4/70     B2 

12 BR RR BB 4/70    A2  
13 BR RR BR 

8/14 

8/70 
4/70    A2  

14 RR BB BB 1/70 A1     
15 RR BB BR 4/70   C1   
16 RR BB RR 

6/70 
1/70  B1    

17 RR BR BB 4/70     B2 
18 RR BR BR 

8/70 
4/70     B2 

19 RR RR BB 

3/14 

1/70 1/70   C1   
 
Amy knows that these are all the possible configurations. She should be able deduce her colors if 
the information from the others' foreheads is enough to determine that the in all rows that could 
represent her game (considering her information) indicate that she must only have a single 
possibility of sticker colors. Her inability to see her own stickers may be simulated by covering 
column A. 
There are two rows in which Amy can determine that she is in a  sticker-determining situation: 
rows 14 and 6. She can end the turn on her game –i.e. win– by declaring the only possible in 
column A of the row (the only possible sticker color pair on her forehead). This is denoted by 
adding A1 to the right section of the table: Amy wins on her turn #1. 
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Now, Brian may do exactly the same, by determining from the others' stickers the rows in which 
he may be. If this gives him a unique possibility for the stickers on his forehead, he may win the 
game, and we note this by adding B1 to the right any rows that give him a win. 
This continues for CoScott's first turn, Amy's second turn, Brian's second turn, etc. Each time we 
find a row which is the only remaining (not already won, i.e. without a winner's mark at the right 
of the row) row from which the player may see the two sticker configurations on the others' 
foreheads, we note that Player P won on turn n: Pn. 
We will find that the game must end, since at the latest, Brian will be able to determine his 
sticker colors on the second turn. The game will always end. 
Each row represents a game course that will occur with the listed probability, which the listed 
player will win. If we add the (independent) probabilities of all the rows containing a certain 
player in the winner section, all the possible ways for the player to win, we will get that player's 
probability of winning a single game. The totals are: 
Amy: 9/35 
Brian: 3/5 
CoScott: 1/7 
Probability of the game never ending: 0 
 
(Interestingly, no two of these numbers share the same denominator in reduced rational form – 
this is the only such occurrence in the table below.) 
 
 
The game may be generalized in several simple ways: for example, the number of colors, the 
number of stickers per color, the number of players, and the number of stickers per forehead may 
be altered. Presumably, the players will be aware of all parameters. 
Increasing the number of colors is not very interesting. It becomes difficult for a player ascertain 
which of the many potential colors are on her/his forehead, and seeing a color does not allow one 
to reason on a single "other color." I believe most multi-color setups are either trivial (as when 
each sticker from the bowl is placed on a forehead, and the first player can simply note how 
many stickers each color (s)he does not see), or will never end. 
I found it most interesting to play with the parameters of the game setup that dictate the 
probabilities of the sticker colors on the players' foreheads. While investigating this problem, I 
used my student edition of Mathematica (5.1) to quickly simulate the logic used above, and 
eventually amassed the following code (it is rather brute-force, but I have not yet found a need to 
rewrite the probability distribution generator more efficiently): 
 

<< "DiscreteMath`Combinatorica`"; 
Probs[xzxz_, yzyz_] := ( 
tbltbl = Join[Table[Subscript[b, n], {n, 1, xzxz}],  Table[Subscript[r, n], {n, 1, yzyz}]]; 
qqq = ({#1[[1]], Length[#1]} & ) /@ Split[Sort[(Sor t /@ Partition[#1, 2] & ) /@ Flatten[Permutations / @ 

KSubsets[tbltbl, 6] /. {Subscript[r, _] -> r, Subsc ript[b, _] -> b}, 1]]]; 
ii = 0; l = (({Prepend[#1, ++ii]} & ) /@ qqq[[All,1 ]])[[All,1,All]]; 
ll[1] = l; nn = Length[l[[1]]] - 1; 
setset := {{3, 4}, {2, 4}, {2, 3}}[[Mod[ii - 1, 3] + 1]]; 
ii = 0; While[ii <= nn || ll[ii] =!= ll[ii - nn], + +ii; ww[ii] = Select[Split[Sort[ll[ii], 

OrderedQ[{#1[[setset]], #2[[setset]]}] & ], #1[[set set]] == #2[[setset]] & ], Length[#1] < 2 
& ][[All,1,1]]; ll[ii + 1] = Select[ll[ii],  !Membe rQ[ww[ii], #1[[1]]] & ];]; 

(Join[#1, {1 - Total[#1]}] & )[Table[Total[qqq[[Fla tten[Table[ww[n], {n, nx, Min[ii, Length[qqq]], 
3}]]]][[All,2]]/Total[qqq[[All,2]]]], {nx, 1, nn}]]  ) 
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"Probs[4,4]", for example, evaluates to {9/35, 3/5, 1/7, 0}, the chances of A, B, C, and no one 
winning (respectively). The following table gives probability values for several amounts of blue 
and red stickers in the bowl. 
 
Number of stickers in bowl Chance of winning (perfect strategy) 

Either color 
(WLOG, B) 

Other color 
(WLOG, R) 

A B C No one 
Maximum 

number of turns 

2 4 1 0 0 0 1 
2 5 2/7 3/7 2/7 0 3 
2 6 3/14 9/28 13/28 0 3 
2 7 1/6 11/36 19/36 0 3 
2 8 2/15 13/45 26/45 0 3 
2 9 6/55 3/11 34/55 0 3 
2 12 6/91 3/13 64/91 0 3 
3 3 1 0 0 0 1 
3 4 17/35 12/35 6/35 0 4 
3 5 1/4 4/7 5/28 0 5 
3 6 1/21 1/12 5/42 3/4 3* 
3 7 1/30 1/15 1/10 4/5 3* 
3 8 4/165 3/55 14/165 46/55 3* 
4 4 9/35 3/5 1/7 0 5 
4 5 1/126 1/126 1/126 41/42 3* 
4 6 1/210 1/210 1/210 69/70 3* 

>4 >4 0 0 0 1 - 
*In these cases, a player may only sometimes identify her/his colors, but this will occur on the 
third turn at the latest, i.e. during the first turn of one of the 3 players. 
 
The cases of a single blue sticker are not listed above. For n>5 total stickers, Amy will be able to 
see the blue sticker on another forehead with 4/n chance and thus know that she has two red 
stickers (and will otherwise be uncertain whether the blue sticker is on her forehead or in the 
bowl). If she does not see a blue sticker, Brian (whose turn is next) will know that he has two red 
stickers, an thus win with a probability of (n-4)/n. CoScott cannot win. 
It seems that if there are two of a sticker color, a player will able to deduce her/his stickers' 
colors on her his first turn, with chances favoring C more as the total number of stickers 
increases. 
With three stickers of a color, the odds swing from B to C, but if there are more than 5 stickers, it 
is  most likely that the game will not end. 
If there are four blue stickers (and not  1, 2, or 3 red stickers, as covered above), then the game 
will either proceed as in the statement of the original problem, or, with more than 8 total stickers, 
degenerate to a fair game with nevertheless a low chance of anyone being able to identify her/his 
colors. He/she will only be able to do so on her/his first turn, if he/she sees the four blue stickers 
on the others' foreheads, and thus concludes that (s)he must have two stickers of the other color. 
If there are more than four stickers of each color, the game will never end. No matter what colors 
Amy sees on the others' foreheads, she will not ever be able to identify her colors. This gives no 
additional information to Brian (who will thus be in the same situation), and so he, and every 
next player in turn, will not be able to determine his colors. 
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It seems that the fairest odds (with a certain/nearly certain winner) are for (2,5). 
 
I have not investigated changing the number of stickers per forehead (whether equal or unequal 
among players), but ran a simulation with a four-player game: If Dana joins the game to take 
turns after CoScott (and Elvis helps out by administrating it), we must increase the number of 
stickers to make the game non-trivial. With 5 blue stickers, and 5 red stickers, the game will end: 
Amy wins with probability 19/63, Brian with probability 8/21, CoScott with probability 10/63, 
and CoScott with probability 10/63. 
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MathCamp 2008 Qualifying Quiz: Problem 9 
Lucas Garron 

 
Instructions: 

Shuffle randomly until card n has been inserted randomly. 

 
Card n is initially at position n. It will only move up from position x to position x-1 if a card 

is inserted behind it. Once a card is inserted behind card n, it will remain behind card n until card 
n is moved behind it. Thus, as card n moves up, cards 1 through n-1 accumulate behind it. 
Eventually, all the other cards should be piled up behind card n. 

The order in which the cards 1 through n-1 are inserted behind card n is arbitrary. Given this 
arbitrary order, any possible sequence of the "back" cards behind card n could have been built up 
in exactly one way (each successive card from the order was added to the sequence in the correct 
relative location), and with the same probability (the first card was added correctly with 1/1 
chance, the second with ½, … the (n-1)th with chance 1/(n-1)). 

When card n reaches the top of the deck, the rest of the cards are in random order. When card 
n is then inserted at a random location, any permutation of the cards could be produced uniquely 
(with probability 1/n) only from an arrangement of the back cards that occurred with probability 

))!/(( 11 −n . All n! permutations occur with equal probability 1/(n!). At this point, the shuffling 
halts (card n has been inserted randomly), and the deck is in random order. 

 
When card n is at position x, it moves up to position x-1 if the top card is placed below it, 

with a chance of (n+x-1)/n. 
Consider n=3. If the shuffle required t turns, card 3 moved t times (from position 3 to 2 [1/3 

probability], 2 to 1 [2/3], and 1 for the random insertion [3/3=1]), and t-3 times did not move. 
For those t-3 times, it remained in position 3 for some y number of moves, and in position 2 for 
t-3-y moves. We can find the expected number of moves E by adding the products of all the 
shuffle lengths, and the sum of the probabilities of all the card-3 paths of that length: 
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 Using some handwork, Mathematica, and the Wikipedia entry on Stirling numbers of the 

second kind, I was able to reduce this approach generally. Unfortunately, I have had hours and 
hours of issues with expressions that give different values once simplified, so I will condense all 
this interesting work into the best result I obtained (though with care it is certainly "easily" 
simplifiable, consistently): 
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I was not able to reduce this, neither was Mathematica, and Mathematica incorrectly handles 
an equivalent expression I had been using. 

 
However, once I obtained evaluatable expressions, the answer to the problem became 

relatively easy to discern: The expected number of insertions is n times the nth harmonic number! 
Knowing the answer, I was able to compose a simple proof: 
Consider the sum of the expected tenure of card n at each position x. To remain at position x 

for m turns, it must remain for x-1 consecutive shuffles with probability (x-1)/m, and then 
advance on the final shuffle with probability (n-(x-1))/m. The expected number of shuffles during 
which card n remains at position x is: 
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The total expected number of shuffles for a deck of size n is the sum of the expected number per 
position: 
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The machine stops after nHn ⋅  shuffles, where nH  is the nth harmonic number. 
 
I calculated the standard deviation of the required number of shuffles to be 
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number of second order, i.e. the sum of the reciprocals of the first n squares. Interestingly, the 
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where the latter sum is the expansion of nE , and the former sum is its term-wise square. 
The standard deviation seems to grow nearly linearly, roughly proportional to 1.282. This is 

peculiarly close (but not quite, but to about 4 digits of accuracy) to what Mathematica lists (in its 
short list of pre-defined natural contents) as "Glaisher's constant," apparently 

....e 28242712911
1

12
1

=−− )('ζ  I have no explication for this observation, but the involvement of the zeta 
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function with harmonic numbers is not at all unexpected. Irregardless, n.2821  may be taken as a 
good approximation for n of low orders (I can't check easily beyond 106). 

Afer writing the previous paragraph, I found that Mathematica computes 

[ ])(lim 2
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∞→ nn

nE , which prompted me to notice that this is relatively easy to show: 
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Note that Glaisher's Constant is about 1.28243, while 282551
6

.≈π . 

 
 
Notes: 
The above results all agree with my simulations (which also indicate that the permutation is 

random). 
 
If this procedure is used to shuffle a deck of 52 cards, it will require an average of 235.98 

card insertions, with a standard deviation of 64.50 insertions. 
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MathCamp 2008 Qualifying Quiz: Problem 10 
Lucas Garron 

 
(a) Using the boxed insight explained in (b): 
All 9=(2+1)(2+1) divisors of 22 52100 ⋅==A  are the sum of 2 integer squares, so Asaf can 

draw 9 different triangles of area 100.  
 
(b) Asaf can draw a triangle of area A iff he can draw two perpendicular segments extending 

from the same point (sides of the rectangle sufficient to determine any congruent rectangle) in 
the discrete plane, the product of whose lengths is A. Without loss of generality, we can assume 
that the rectangle is translated so that common point is the origin, rotated (a multiple of 2/π  
radians) so that the longer (or equal) M segments extends its length n to (x,y) the first quadrant, 
and the shorter segment N of length m extends to (w,z) in the second quadrant. 

(x,y)

(z,w)

m

n

O

 
Lengths 22 yxm +=  and 22 wzn +=  are the square roots of sum of squares, and their 

product is A (m·n=A). 

Segment M lies on a line of slope 2m  for integer m2, which must pass through some point 

A at closest distance 22 )()( yx aaa +=  from the origin (for integer 22 )()( yx aa + ). Every further 

lattice point is located a  farther -thus, the µth lattice point on the line containing segment M (in 

quadrant 1) is at distance am µ=  for integers µ and a. (x,y) must be at such a distance. 
By rotating the plane clockwise 2/π , with (w,z) on N over the same-sloping line as the 

original M, we find that it must be that an ν=  for integers ν and a. (w,z) must be at such a 
distance. 

Since 22222222 aaanmA νµνµ === )()(  and aamnmn 2222 µν ≤⇒≤⇒< , 

122
2

222
22 ≥≥== aa

a

a
nA νµ

ν
νµ

/ , so if n2 is an integer divisor of A2 (at most A), so is the larger m2, 

and if there is a segment N (with lattice ends) of length n such that n2 is a divisor of A2, there is a 
segment M of length m perpendicular to N, with lattice ends, such that they determine a rectangle 
of area A. There exists such a segment N (and thus a segment M) only if 222 wzn +=  is a sum of 
two integer squares. There is precisely one rectangle determined by each divisor of A2 no larger 
than A (i.e. each divisor of A), but only if it is a sum of two squares (and all rectangles can be 
determined this way). Thus: 
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The number of rectangles Asaf can draw with given integer area A is equal to the number of 
divisors of A that are expressible as a sum of two integer squares. 

 
 
At Berkeley Math Circle, I proved (with guidance) that an integer can be written as a sum of 

two squares if its prime factorization contains a prime of the form 4q+3 (for integer q) with an 
odd exponent. 

Thus, the number of drawable rectangles may be found as follows: 
 

Find the prime factorization of A: 
nnmm k

n
k

n
kkj

m
j

m
jj rrrrrqqqhA )()(...)()()()(...)()( 34343434141414142 121121

121121 +⋅+⋅⋅+⋅+•+⋅+⋅⋅+⋅+•= −−
−− 2. 

Each divisor is of the form 
nnmm c

n
c

n
ccb

m
b

m
bba rrrrrqqq )()(...)()()()(...)()( 34343434141414142 121121

121121 +⋅+⋅⋅+⋅+•+⋅+⋅⋅+⋅+• −−
−− , with 

nnnnmmmm kckckckcjbjbjbjbha <<<<<<<<< −−−− ,,...,,,,,...,,, 112211112211 . 
Enumerating the number of rectangle-producing divisors: Each divisor is a sub-product of the 
factorization. In determining a divisor there are h+1 choices for a (0, 1, 2,…, h-1, h), j i+1 choices 
for bi+1, but to make the divisor a sum of squares,   12 +/ik  choices for even exponents ci. 
The number of different rectangles Asaf can draw is: 
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Mathematica Code: 
 

 

Triangles[A_]:=Times@@(If[Mod[#1[[1]],4]==3,Floor[# 1[[2]]/2+1],#1[[2]]+1]&)/@FactorInteger[A]]  

 

 
I calculate that below a million, the areas A that allow more rectangles to be drawn that any 

lower A are (along with the number of drawable rectangles): {{1, 1}, {2, 2}, {4, 3}, {8, 4}, {16, 
5}, {20, 6}, {40, 8}, {80, 10}, {160, 12}, {320, 14}, {360, 16}, {720, 20}, {1440, 24}, {2880, 
28}, {3600, 30}, {4680, 32}, {7200, 36}, {9360, 40}, {14400, 42}, {18720, 48}, {37440, 56}, 
{46800, 60}, {74880, 64}, {93600, 72}, {159120, 80}, {187200, 84}, {318240, 96}, {636480, 
112}, {795600, 120}} 


